1: Blood. 2003 May 15;101(10):3901-7. Epub 2002 Dec 27. Hyperhomocysteinemia accelerates atherosclerosis in cystathionine beta-synthase and apolipoprotein E double knock-out mice with and without dietary perturbation. Wang H, Jiang X, Yang F, Gaubatz JW, Ma L, Magera MJ, Yang X, Berger PB, Durante W, Pownall HJ, Schafer AI. Department of Medicine, Baylor College of Medicine, Houston, TX, USA. hongw@bcm.tmc.edu Although hyperhomocysteinemia is an independent risk factor for cardiovascular disease, a direct role for homocysteine (Hcy) in this disease remains to be shown. Whereas diet-induced hyperhomocysteinemia promotes atherosclerosis in animal models, the effects of Hcy on atherogenesis in the absence of dietary perturbations is not known. We have generated double knock-out mice with targeted deletions of the genes for apolipoprotein E (apoE) and cystathionine beta-synthase (CBS), which converts Hcy to cystathionine. ApoE(-/-)/CBS(-/-) mice developed aortic lesions even in the absence of dietary manipulation; lesion area and lesion cholesteryl ester (CE) and triglyceride (TG) contents increased with animal age and plasma Hcy levels. Plasma total cholesterol was significantly increased, whereas high density lipoprotein (HDL) cholesterol and TG concentrations of apoE(-/-)/CBS(-/-) mice were decreased. Cholesterol esterification and activities of enzymes catalyzing CE or TG formation in the vessel wall and in peritoneal macrophages were not changed by hyperhomocysteinemia. However, uptake of human acetyl-LDL, but not native low density lipoprotein (LDL), by mouse peritoneal macrophages was higher in the presence of hyperhomocysteinemia. These results suggest that isolated hyperhomocysteinemia is atherogenic and alters hepatic and macrophage lipoprotein metabolism, in part, by enhancing uptake of modified LDL. PMID: 12506016 [PubMed - indexed for MEDLINE]